Govt. College, Ropar

Department of Botany

Class B.Sc. 5th Sem.

(Session 2022-23)

Molecular Biology and Developmental Biology

Week	Lesson scheduled
1 st	The nature of genetic material: DNA Structure, Watson and Crick-
	model, Polymorphism of DNA Helix.
	Replication of DNA: Enzymes and mechanism involved in DNA
	replication (prokaryotes and eukaryotes), DNA damage and repair.
2 nd	RNA Processing: Concept of introns and exons, spliceosome
	machinery and splicing pathways.
	> Transcription: Mechanism of Transcription in Prokaryotes and
	Eukaryotes.
3 rd	Translation (Prokaryotes and Eukaryotes): Various steps and mechanism
	involved in protein synthesis.
4 th	Transcription Regulation: Principles of transcriptional regulation in
	prokaryotes with examples from lac and trp operons. Transcription
	Regulation in Eukaryotes.
5 th	Recombinant DNA technology: Introduction to the concept of
	Recombinant DNA Technology: Enzymes involved, vectors,
	transformation techniques (microbial), Construction and screening of
	DNA libraries.
6 th	Application of recombinant DNA technology: Application in medicine:
	vaccines, detection of genetic diseases (Sickle cell anemia), gene
	therapy.
7 th	> MST
8 th	> MST
9 th	Historical perspective and basic concepts: Phases of development, Cell-
	Cell interaction, Pattern formation, Differentiation and growth,
	Differential gene expression, Cytoplasmic determinants and asymmetric
	cell division
	Implications of Developmental Biology: Teratogenesis: Teratogenic
	agents and their effects on embryonic development.
L	

1-50%

Continel.

10 th	Gametogenesis: Spermatogenesis, structure of sperm, variations in
	sperm structure, significance of spermatogensis. Oogenesis, structure
	and functions of egg. Vitellogenesis, functions of yolk, Types of eggs
11 th	Egg membranes; Fertilization: mechanism and significance of
	fertilization, Monospermy and polyspermy, Blocks to polyspermy;
	Planes and patterns of cleavage; Morula and morulation, Blastula and
	blastulation, Types of Blastula.
12 th	Development of frog and chick upto gastrulation; Morphogenetic
	movements: Types and examples.
	 Organizer: Speman-Mangold organiser experiment; concept of
	induction, determination, and differentiation Fate of Germ Layers
13 th	Extra-embryonic membranes; Implantation of embryo in humans,
	Placenta (Structure, physiology, types and functions of placenta)
14 th	Metamorphosis: Changes, hormonal regulations in amphibians and
	insects; Regeneration: Modes of regeneration, epimorphosis,
	morphallaxis and compensatory regeneration (with one example each)
	Ageing: Concepts and Theories.
15 th	Control of Development: Fundamental processes in development (bried)
	idea) - Gene activation, determination, induction, Differentiation,
	morphogenesis, intercellular communication, cell movements and cell
	death

alter 6

Surinder singh Dept. of Zoology

Jateh Sm Principal Govt. College

Ropar

Govt. College, Ropar

Department of Botany

Class B.Sc. 6th Sem.

(Session 2022-23)

Medical zoology and medical lab technology

Week	Lesson scheduled
1 st	Introduction to Parasitology (pertaining to various terminologies in use).
2 nd	Brief accounts of life history, mode of infection and pathogenicity of the
	various pathogens with reference to man; prophylaxis and treatment:
3 rd	Pathogenic protozoans: Entamoeba, Trypansoma, Leishmania
4 th	Pathogenic protozoans: Giardia, Trichomonas and Plasmodium.
5 th	>) Pathogenic helminthes: Fasciolopsis. Schistosoma, Echinococcus,
	Ancylostoma,
6 th	>) Pathogenic helminthes: Ancylostoma, Trichinella, Wuchereria,
	Dracunculus and Oxyuris.
7 th	Life cycle and control measures of arthropod vectors of human diseases:
	Haemorrhagic fever (Aedes); Filariasis and Japanese Encephalitis
	(Culex).
8 th	Life cycle and control measures of arthropod vectors of human diseases:
	Malaria (Anopheles) Yellow fever and Dengue, (Aedes)
9 th	> MST
10 th	> MST
11 th	Laboratory techniques: Colorimetry, Microscopy, Autoclaving,
	Centrifugation, Spectrophotometry.
12 th	Haematology: Collection of blood (Venous and Capillary),
	Anticoagulants (merits and demerits). Romanowsky's stains.
13 th	Haematology: Total RBC count, Erythrocyte sedimentation rate, TLC.
	DLC, Eosinophil count, Platelet count, Reticulocyte count.
14 th	Biochemistry: Protein estimation, estimation of blood urea, sugar and
	cholesterol, serum creatinine and uric acid, urine analysis; test.
15 th	Biochemistry: estimation of protein, sugar, bile salts, bile pigments,
	ketone bodies; enzyme studies (serum transaminase, phosphatase,
	amylase and lipase), liver function

Stor

Contre A.

16 th	 Histopathology: Common fixatives and staining techniques,
17 th	 Histochemistry: Principle and method: Staining of carbohydrates, proteins and fats with bromo phenol blue, Periodic acid Schiff, Sudan Black blue and Feulgen reaction
18 th	 Histochemistry: Principle and method: Staining of carbohydrates, proteins and fats with bromo phenol blue, Periodic acid Schiff, Sudan Black blue and Feulgen reaction

2000 V

Surinder singh

Dept. Of Zoology

Jatule Grand Principal Govt. College Ropar